85. Alkyl-Oxygen Fission in Carboxylic Esters. Part IX. Methyl-2-thienylcarbinol.

By I. G. Anderson, M. P. Balfe, and J. Kenyon.

Optically impure di(methyl-2-thienylcarbinyl) phthalate and methyl-2-thienylcarbinyl p-tolyl sulphone are prepared.

By the methods described in Parts II (J., 1942, 605), IV (J., 1946, 803), and V (J., 1946, 807), optically impure di(methyl-2-thienylcarbinyl) phthalate and methyl-2-thienylcarbinyl p-tolyl sulphone have been prepared from the hydrogen phthalate: the latter reaction is accompanied by racemisation. The neutral phthalate is obtained in 20%, and the sulphone in 30% yield; from substituted diphenylcarbinols (loc. cit.), yields of approximately 100% are obtained. Anderson, Balfe, and Kenyon (J., 1950, 1866) have shown that when the hydrogen phthalate is hydrolysed in 0.4n-alcoholic alkali containing 1% of water, the resulting methyl-2-thienylcarbinol is 97% optically pure. Hydrolysis by approximately 10n-aqueous alkali gives a carbinol which is 88% optically pure. p-Methoxyphenyl- α -naphthyl-carbinol (Part IV, loc. cit.) is about 50% racemised when prepared by hydrolysis of its hydrogen phthalate with 10n-aqueous alkali. It therefore appears that the tendency to alkyl-oxygen fission in the ester of methyl-2-thienylcarbinol is less than in the esters of substituted diphenyl-

carbinols, but greater than in the esters of substituted allyl alcohols (Part I, J., 1942, 556) which yield neither the neutral ester nor the sulphone by the methods now under discussion.

EXPERIMENTAL.

The preparation of (+)- and (-)-methyl-2-thienylcarbinol is described by Anderson, Balfe, and Kenyon (loc. cit.).

Di(methyl-2-thienylcarbinyl) Phthalate.—The oil which separated during 12 hours from a solution of the (+)-hydrogen phthalate (5 g.) and sodium hydroxide (0·18 g.) in water (100 c.c.) was dissolved in ether, and the solution dried and concentrated. Methyl-2-thienylcarbinol (1·5 g.; b. p. 99°/18 mm.; n_{20}^{20} 1·5413) was distilled from the residue, leaving the crude neutral phthalate as a gum (0·7 g.) (Found, by hydrolysis with boiling alcoholic potassium hydroxide: equiv., 203. $C_{20}H_{18}O_{4}S_{2}$ requires equiv., 193); it could not be crystallised. The aqueous residue was acidified and filtered, evaporated to dryness, and extracted with ethyl alcohol; a combined yield of 2·6 g. of phthalic acid, m. p. 198° (decomp.), was obtained.

Methyl-2-thienylcarbinyl p-Tolyl Sulphone.—A filtered solution of the (-)-hydrogen phthalate (2 g.; $[a]_D^{20} - 10 \cdot 0^\circ$ in benzene) in $0 \cdot 5$ n-aqueous sodium hydroxide (20 c.c.) was quickly mixed with a solution of sodium toluene-p-sulphinate (1·5 g.) in water (25 c.c.). After 24 hours the crystalline deposit (0·6 g.) was separated and recrystallised from ethyl alcohol, yielding the crude sulphone, m. p. 89—91° (Found: C, 58·4; H, 5·0; S, 22·2. $C_{13}H_{14}O_2S_2$ requires C, 58·6; H, 5·3; S, 24·2%), which was optically inactive.

Hydrolysis of (-)-Methyl-2-thienylcarbinyl Hydrogen Phthalate.—The acid ester (4·3 g.; $[a]_D - 20\cdot 5^\circ$ in benzene, i.e., 35% of the maximum rotatory power) was dissolved in a very concentrated solution of sodium hydroxide (1·6 g.) through which a current of steam was passed and the volume of the solution kept below about 5 c.c. The recovered alcohol (1·7 g.) had b. p. 89°/10 mm., $[a]_D^{18} - 7\cdot 6^\circ$ (l, 2; c, 5·00 in benzene).

Thanks are expressed to Imperial Chemical Industries Limited for grants and to the Department of Scientific and Industrial Research for a maintenance grant (to I. G. A.).

BATTERSEA POLYTECHNIC, LONDON, S.W.11.

[Received, October 10th, 1950.]